Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1362780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487527

RESUMO

Dengue, caused by the dengue virus (DENV), affects millions of people worldwide every year. This virus has two distinct life cycles, one in the human and another in the mosquito, and both cycles are crucial to be controlled. To control the vector of DENV, the mosquito Aedes aegypti, scientists employed many techniques, which were later proved ineffective and harmful in many ways. Consequently, the attention shifted to the development of a vaccine; researchers have targeted the E protein, a surface protein of the virus and the NS1 protein, an extracellular protein. There are several types of vaccines developed so far, such as live attenuated vaccines, recombinant subunit vaccines, inactivated virus vaccines, viral vectored vaccines, DNA vaccines, and mRNA vaccines. Along with these, scientists are exploring new strategies of developing improved version of the vaccine by employing recombinant DNA plasmid against NS1 and also aiming to prevent the infection by blocking the DENV life cycle inside the mosquitoes. Here, we discussed the aspects of research in the field of vaccines until now and identified some prospects for future vaccine developments.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Vacinas de DNA , Vacinas Virais , Animais , Humanos , Vírus da Dengue/genética , Mosquitos Vetores , Vacinas Atenuadas , Vacinas de Produtos Inativados
3.
Int J Infect Dis ; 126: 125-131, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36403817

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19), has recently posed a threat to global health by spreading at a high rate and taking millions of lives worldwide. Along with the respiratory symptoms, there are gastrointestinal manifestations and one of the most common gastrointestinal symptoms is diarrhea which is seen in a significant percentage of COVID-19 patients. LITERATURE REVIEW: Several studies have shown the plausible correlation between overexpressed angiotensin converting enzyme 2 (ACE2) in enterocytes and SARS-CoV-2, as ACE2 is the only known receptor for the virus entry. Along with the dysregulated ACE2, there are other contributing factors such as gut microbiome dysbiosis, adverse effects of antiviral and antibiotics for treating infections and inflammatory response to SARS-CoV-2 which bring about increased permeability of gut cells and subsequent occurrence of diarrhea. Few studies found that the SARS-CoV-2 is capable of damaging liver cells too. No single effective treatment option is available. LIMITATIONS: Confirmed pathophysiology is still unavailable. Studies regarding global population are also insufficient. CONCLUSION: In this review, based on the previous works and literature, we summarized the putative molecular pathophysiology of COVID-19 associated diarrhea, concomitant complications and the standard practices of management of diarrhea and hepatic manifestations in international setups.


Assuntos
COVID-19 , Humanos , COVID-19/complicações , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Peptidil Dipeptidase A/fisiologia , Diarreia/tratamento farmacológico , Diarreia/etiologia
4.
Microbiol Spectr ; 10(6): e0199822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453913

RESUMO

Accurate and early diagnoses are prerequisites for prompt treatment. For coronavirus disease 2019 (COVID-19), it is even more crucial. Currently, choice of methods include rapid diagnostic tests and reverse transcription polymerase chain reaction (RT-PCR) using samples mostly of respiratory origin and sometimes saliva. We evaluated two rapid diagnostic tests with three specimen types using viral transport medium (VTM) containing naso-oropharyngeal (NOP) swabs, direct nasal and direct nasopharyngeal (NP) samples from 428 prospective patients. We also performed RT-PCR for 428 NOP VTM and 316 saliva samples to compare results. The sensitivity of the SD Biosensor Standard Q COVID-19 antigen (Ag) test kit drastically raised from an average of 65.55% (NOP VTM) to 85.25% (direct nasal samples), while RT-PCR was the gold standard. For the CareStart kit, the sensitivity was almost similar for direct NP swabs; the average was 84.57%. The specificities were ≥95% for both SD Biosensor Standard Q and CareStart COVID-19 Ag tests in all platforms. The kits were also able to detect patients with different variants as well. Alternatively, RT-PCR results from saliva and NOP VTM samples showed high sensitivities of 96.45% and 95.48% with respect to each other as standard. The overall results demonstrated high performance of the rapid tests, indicating the suitability for regular surveillance at clinical facilities when using direct nasal or direct NP samples rather than NOP VTM. Additionally, the analysis also signifies not showed that RT-PCR of saliva can be used as an choice of method to RT-PCR of NOP VTM, providing an easier, non-invasive sample collection method. IMPORTANCE There are several methods for the diagnosis of coronavirus disease 2019 (COVID-19), and the choice of methods depends mostly on the resources and level of sensitivity required by the user and health care providers. Still, reverse transcription polymerase chain reaction (RT-PCR) has been chosen as the best method using direct naso-oropharyngeal swabs. There are also other methods of fast detection, such as rapid diagnostic tests (RDTs), which offer result within 15 to 20 min and have become quite popular for self-testing and in the clinical setting. The major drawback of the currently used RT-PCR method is compliance, as it may cause irritation, and patients often refuse to test in such a way. RDTs, although inexpensive, suffer from low sensitivity due to technical issues. In this article, we propose saliva as a noninvasive source for RT-PCR samples and evaluate various specimen types at different times after infection for the best possible output from COVID-19 rapid tests.


Assuntos
Teste para COVID-19 , COVID-19 , Humanos , Estudos Prospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saliva , COVID-19/diagnóstico , Manejo de Espécimes
5.
Pathogens ; 11(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422640

RESUMO

Amongst the multiple ways to diagnose coronavirus disease-2019 (COVID-19), reverse transcription polymerase chain reaction (RT-PCR) remains the reference gold standard, providing fast and accurate results. This study evaluated and compared the performance of three commercially available COVID-19 RT-PCR kits-Aridia® COVID-19 Real-Time PCR Test (CTK Biotech, Inc., Poway, CA, USA), Novel Coronavirus (2019-nCoV) Nucleic Acid Detection Kit (Sansure Biotech Inc., Changsha, China) and AllplexTM 2019-nCoV assay (Seegene Inc., Seoul, Republic of Korea) for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A total of 326 clinically suspected patients were enrolled for the study, and among them, 209 were diagnosed as positive and 117 as negative when tested with the reference method, US CDC 2019-Novel Coronavirus (2019-nCoV) Real Time RT-PCR Diagnostic Panel. The Aridia® kit showed total agreement with the reference test, with a sensitivity of 100% (95% CI: 98.25% to 100.0%) and a specificity of 100% (96.90% to 100.00%). The AllplexTM kit also showed 100% specificity (95% CI: 96.90% to 100.00%), but a lower sensitivity (98.09%, 95% CI: 95.17% to 99.48%). Among the three kits, the Novel Coronavirus (2019-nCoV) Nucleic Acid Detection Kit showed the worst performance, with a sensitivity of 98.6% (95% CI: 95.9% to 99.7%) and a specificity of 95.73, 95% (CI: 90.31% to 98.60%). While all these kits conform to the requirement for routine molecular diagnosis with high performances, the Aridia® COVID-19 Real-Time PCR Test showed the best performance among the three kits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...